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Abstract 

This paper shows how system-specific static analysis 
can find security errors that violate rules such as "in- 
tegers from untrusted sources must be sanitized before 
use" and "do not dereference user-supplied pointers." 
In our approach, programmers write system-specific 
extensions that are linked into the compiler and check 
their code for errors. We demonstrate the approach's 
effectiveness by using it to find over 100 security er- 
rors in Linux and OpenBSD, over 50 of which have 
led to kernel patches. An unusual feature of our ap- 
proach is the use of methods to automatically detect 
when we miss code actions that should be checked. 

1    Introduction 

Secure code must obey rules such as "sanitize un- 
trusted input before using it," "check permissions 
before doing operation X," "do not release sensitive 
data to unauthorized users." All code must obey 
these rules and a single violation can compromise the 
integrity of the entire system. Unfortunately, many 
rules are poorly understood and erratically obeyed. 

This paper shows how to combat these problems 
by automatically checking security rules in a general, 
lightweight manner using system-specific, static anal- 
ysis. We have used our approach, metacompilation 
(MC), in prior work to find hundreds of errors in op- 
erating system (OS) code [8, 9]. The current paper fo- 
cuses on using MC to check security properties. Our 
results show it catches security errors as effectively as 
it did non-security ones. 
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MC finds rule errors by exploiting the fact that 
many of the abstract properties relevant to a rule 
map clearly to concrete code actions [8]. Thus, we can 
check these actions for errors using a compiler. For 
example, to catch violations of the rule "do not use 
an unchecked, untrusted value as an array index" a 
compiler can follow integers read from untrustworthy 
sources and flag when they are not bounds checked 
before being used as an index. 

Of course, to check a rule, the compiler must first 
know it. Since many security rules are domain or even 
system specific, hard wiring a fixed set into the com- 
piler is ineffective. MC attacks this problem by mak- 
ing it easy for implementers to add rules to the com- 
piler in the form of high-level, system-specific check- 
ers. These extensions encode the rule to be checked, 
but leave the bulk of the analysis to the compiler. 
Because checkers are written by system implementers 
they can readily take into account the ad hoc (some- 
times bizarre) semantics of a system. 

When apphcable, the approach has several nice 
features. First, it propagates the knowledge of one 
programmer to many. Rather than requiring all pro- 
grammers to know and obey all of the rules all of 
the time, MC allows a single programmer to under- 
stand a rule once, write an extension that checks it, 
and then have this extension automatically imposed 
on all code. This ability is important for security, 
since many security rules are subtle. For several of 
the errors we found, even seasoned implementers did 
not understand the relevant rule, to the extent that 
they initially argued against the validity of the errors 
we reported (until other implementers explained the 
attacks). 

Second, static analysis readily finds difficult-to- 
observe errors. This ability is important since many 
security errors are silent: they compromise system 
security for certain input values but may not crash 
the machine. In contrast, static analysis can say what 
line and what file has an error and why. 

Third, static analysis catches errors without run- 
ning code.   This feature helps to find errors in op- 
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erating systems, which have too many code paths 
for thorough testing. Worse, most operating system 
code cannot be executed: most of it resides in de- 
vice drivers, and a given site typically tens of devices 
rather than the 100-lOOOs needed to test all drivers. 
Many of the driver errors we found were for devices 
we have never heard of, much less have access to. 

Finally, extensions are lightweight. Once the fixed 
cost of writing the extension is paid, there is lit- 
tle incremental manual cost to using it as code size 
grows (mainly the cost of inspecting errors). Other 
approaches, such as formal verification and testing, 
require work proportional to the size of code. 

We illustrate how to use metacompilation to find 
security bugs by examining a single checker deeply 
and sketching two others. Our main focus is our 
range checker, which warns when integers read from 
untrusted sources (such as network packets) are used 
in dangerous ways without first being checked. This 
checker both demonstrates the approach's effective- 
ness and serves as a case study illustrating the general 
issues involved in building useful checkers. 

Our two other checkers show the generality of 
the approach. The first warns when pointers read 
from untrusted sources are dereferenced. The second 
warns when non-security errors in the kernel could be 
induced by the user, thus letting a malicious attacker 
crash the system. 

A key result of the paper is showing how to make 
checkers "fail stop" by catching when they miss ac- 
tions relevant to the rule they check. We do so using 
belief analysis [9]. Belief analysis infers programmer 
beliefs from source code. We use it to find when 
an extension writer has missed a checkable action 
by flagging when code appears to believe an action 
should be checked, even though the extension does 
not. For example, in the context of the range checker, 
if code reads a value from a dangerous location and 
then sanitizes it, this implies the programmer believes 
the value will be used for something dangerous. If this 
value does not reach a known dangerous operation, 
this impUes that we have missed one. Other checking 
approaches can also use this technique, since they are 
all vulnerable to incomplete or wrong specifications. 

Our most important result is that MC checkers 
are effective on real code. The range checker alone 
found well over one hundred security errors in Linux 
and OpenBSD code, almost half of which have re- 
sulted in kernel patches based on our reports. 

A final practical result is that writing checkers 
requires fittle background knowledge. The bulk of the 
implementation work for this paper was done by the 
first author as an undergraduate with little compiler 
training and no real prior exposure to OS code. 

/* 2.4.5-ac8/drivers/usb/se401.c:se401_ioctl  */ 
if   (copy_from_user(ftfraine,   arg,   sizeof(int))) 

return -EFAULT; 
ret=se401_newframe(se401,   frame); 
se401->frame [frame].grabstate=FRAME_UNUSED; 
return ret; 

Figure 1: Simple range error that can compromise 
integrity by corrupting kernel memory. The vari- 
able frame is read from the user and then used as an 
unchecked array index to the se401->f rame array. 

While the approach works well on real code, there 
are three main caveats to keep in mind. First, our 
checkers are not verifiers: code that contains errors 
can pass through them silently. Second and con- 
versely, the checkers give errors when they should not. 
False positives can arise both because the checker's 
analysis is overly simplistic or because static analysis 
is undecidable in general. Despite this, the false pos- 
itive rate is quite low — less than 20% in most cases. 
Finally, since we are not Linux or BSD implementers, 
we are capable of mis-diagnosing error reports. We 
have countered this problem by releasing all of our 
errors to the system builders for confirmation. 

Sections 2— 6 describes our integer range checker 
in detail. Sections 2 gives an overview; Section 3 
shows how we infer missed actions; Section 4 explores 
analysis issues; Section 5 gives examples of enforc- 
ing subtle rules; and Section 6 presents our results. 
Section 7 explains both the checking of user-suppUed 
pointers and marking user-exploitable errors. Sec- 
tion 8 discusses related work and Section 9 concludes. 

2    Range Checker Overview 

This section gives an overview of our range checker, 
which warns when integers supplied by untrustwor- 
thy sources are used for dangerous operations before 
performing necessary range checks. 

Figure 1 gives an example error caught by the 
checker. The variable frame is read from a user 
application (via copyjfromjiser) and then used 
as an unchecked array index. Additionally, be- 
cause the checker does inter-procedural analysis (see 
§ 4) it warns that frame is passed to the function 
se401_newf rame, which similarly uses it as an index. 
Both errors let an attacker corrupt arbitrary kernel 
memory. 

We give an overview of the checker below; the next 
three sections discuss several aspects in more detail. 

Abstractly, the checker ensures that data pro- 



Source Description 
sys-*(T x) 

skb->data 

copyiii(u,k,sz) 

All system  call parameters 
of any type.    In both BSD 
and Linux system calls have 
a "sys_" prefix. 
Data read from a network 
packet.   On Linux, network 
data is initially read from the 
data field of an skb struc- 
ture. We do not do this check 
for BSD. 
Data expUcitly copied from 
user address u into the mem- 
ory pointed to by k. 
Additionally, the variable u 
is also tainted since user ad- 
dresses are almost certainly 
supplied by the user (see § 3.1 
for details). 

Table 1: The three sources of untrustworthy data. 

duced by an untrustworthy source does not reach 
a trusting sink without being sanitized. Thus, it 
is specified by three pieces: (1) the untrustworthy 
sources that generate data, (2) the checks that must 
be done to sanitize the data from these sources, and 
(3) the trusting sinks that must be protected. We 
discuss these below. 

Untrustworthy sources. The checker tracks 
untrusted data from three sources (summarized in 
Table 1): 

1. System calls. These typically adhere to well- 
defined naming conventions (e.g., on both 
Linux and BSD their names begin with the 
prefix "sys_"). To detect these routines, the 
checker calls a user-supplied function that re- 
turns 1 if a given function name could be a sys- 
tem call, 0 if it could not. 

2. The routines that can copy data from user 
space. These routines are supplied as a text 
file giving the routine name and the argument 
that represents the copied in data. For exam- 
ple, on Linux the routines copyJrom_user and 
get_user copy data into their first argument. 
On BSD copyin copies user data into the sec- 
ond. Typically, there are between two to ten 
such routines. 

3. Data from the network. This requires specify- 
ing which data structures contain packet data 
and how it is extracted as well as which rou- 

/* 2.4.5/drivers/char/dnn/i810_clina. c: 1417: 
i810_copybuf */ 

if(copy_from_user(&d, arg, sizeof(d))) 

return -EFAULT; 
ifCd.idx > dina->buf_count) 

return -EINVAL; 
buf = dma->buflist[ d.idx ]; 

if  (copy_from_user(buf_priv->virtual, 
d.address,  d.used)) 

return -EFAULT; 

Figure 2: Missing lower bound check that allows a 
read of arbitrary kernel memory. The structure d is 
read from the user. Its signed integer field d. idx is 
upper-bound checked but not lower-bound checked 
before being used as an array index. As a bonus, the 
field d.used is completely unchecked, allowing up to 
2GB of user data to be copied into the kernel from 
user space. 

tines send and receive data. We currently only 
support this check on Linux. Section 3.3 gives 
more detail. 

Sanitizing checks. In general, signed integers 
must be both upper- and lower-bounds checked; un- 
signed integers need only an upper-bound check. Un- 
trusted integers can also be sanitized with an equality 
check, since this bounds the integer to single num- 
ber (the degenerate range). While the need for these 
checks is simple to understand, the possibility of inte- 
ger overflow can make them difficult to obey in prac- 
tice (see § 5). Many programmers appear to view in- 
tegers as having arbitrary precision, rather than be- 
ing fixed-sized quantities operated on with modulo 
arithmetic. 

A common error is to store a user-supplied length 
or index in a signed variable but then only perform 
an upper-bound check on it, allowing an attacker to 
compromise the system by passing in negative values. 
Figure 2 gives a representative example. Here the 
data in structure d is copied from user space. The 
signed field d. idx is checked against an upper bound, 
but not against a lower bound. Thus, an attacker 
could pass in a negative value to force the kernel to 
read from arbitrary memory. 

It is important to note that the checker is explic- 
itly unsound in that it ensures that an untrusted 
value is checked against some bound rather than 
against the correct one. The lack of any specifica- 
tion of sizes in real code makes precise, static bounds 
checking challenging. Our decision to not model ac- 
curate bounds means we can use simple analysis to 



Sinks Description 
array[x] Array index: corrupt kernel 

memory or crash system. 
while(i < x) Upper or lower loop bound: 

loop termination under 
users control. 

bcopy(p,q,x), 
memcpy(p,q,x) 

Length argument for a mem- 
ory copy operation: corrupt 
memory. 

copyout(k,u,x), 
copyin(u,k,x) 

Length argument for user- 
kernel copy operation: leak 
information to user or copy 
unexpected amount of user 
data into kernel (§ 5.1). 

kmalloc(x), 
malloc(x) 

Size argument for mem- 
ory allocator: memory cor- 
ruption or dangerous style 
(§ 5.2). 

Table 2: Summary of trusting sinks and the at- 
tacks allowed if a tainted variable x reaches them. 
The first two sinks are system-independent and hard- 
wired into the checker; the rest are specified on a 
per-system basis. 

find many errors, with few false positives. 
Trusting sinks. As summarized in Table 2 the 

checker flags when unsanitized values reach four types 
of trusting sinks. The most obvious sinks are arrays 
whose bounds can be exceeded. Since arrays in C do 
not have built-in bounds checks, the kernel must pre- 
vent the user from reading or writing off either end 
of the array. The second sink is that if a user value 
specifies the number of iterations for a loop, that loop 
can run for "too long," allowing a denial-of-service at- 
tack. Finally, the length argument to various copying 
and allocation routines must be protected. The most 
straightforward error in this case is that an unchecked 
length allows an attacker to read or write more ker- 
nel data than was expected. Examples of such er- 
rors are given in Figure 2 and Figure 7. Allocation 
based on unsanitized integers is at least bad style, 
and can also be used to launch subtle memory cor- 
ruption attacks (see § 5.2). The first two sinks are 
system-independent; the latter must be specified for 
each new system. 

Thus, the checker looks for approximately 3 * 3 * 
3 = 27 types of security holes: three possible sources 
of information combined with three checking errors 
combined with three types of trusting sinks. 

Implementation Figure 3 gives a state ma- 
chine view of the range checker.  It has four states: 

Figure 3: Approximate range checker. 

tainted, need_lb ("need lower bound"), need.ub 
("need upper bound"), and a special stop state. The 
transition rules are as follows: 

• The checker ignores variables in the stop state. 

• The checker emits an error if a variable in the 
tainted, need_ub, or need_lb reaches a trust- 
ing sink. 

• Signed integers read from network data, copied 
from the user, or from system calls are placed in 
the tainted state; unsigned integers are placed 
in the need_ub state. 

• An upper-bound check on a tainted variable 
places it in the need_lb state. 

• A lower-bound check on a tainted variable 
places it in the need_ub state. 

• An upper-bound check on a need_ub variable 
places it in the stop state. 

• A lower-bound check on a needJLb variable 
places it in the stop state. 

• An equality test on a variable in any state 
places it in the stop state. 

Figure 4 gives a textual representation of the 
range checker state machine. It is written in metal, a 
high-level, state-machine language [8]. During com- 
pilation the extension is dynamically linked into our 
extensible compiler, xgcc (based on the GNU gcc 



compiler). After xgcc translates each input function 
into its internal representation, the checker is applied 
down every possible execution path in that function. 

Typically, extensions use patterns to search for in- 
teresting source code features, which, when matched, 
cause transitions between states. The transition can 
optionally go to a new state or call into C code. Pat- 
terns are written in an extended version of the base 
language (C), and can match almost arbitrary lan- 
guage constructs such as declarations, expressions, 
and statements. States can be global (such as the 
start state) or bound to variables or expressions. 

In the range checker, each match of a call to 
copyjfrom-user in the start state will place the 
call's first argument in the tainted state and track it 
separately. After starting a variable, the checker uses 
patterns to check for ways that the variable can tran- 
sition out of the tainted state. It sets the state of a 
variable after a bounds check differently depending on 
whether the check succeeded (using the "true=..." 
notation) or failed (using the "false=..." notation). 
For example, a variable in the tainted state that 
has a lower-bound check done (specified via the pat- 
tern "x > y") will be put in the need.ub (need upper 
bound) state on the true path of the check and in the 
need_lb (need lower bound) on the false path. The 
checker stops following a variable once it has seen 
both an upper- and lower-bound check for that vari- 
able. 

Retargetting non-network sources and sinks re- 
quires giving a routine that indicates whether a given 
name is a system call, and two text files, listing all 
untrusted sources and trusting sinks. Figure 5 gives 
the complete specification for the BSD range checker. 
It uses the default specification for system calls (that 
they begin with "sys_"). Thus it needs only a hst 
of sources (2) and sinks (13). Linux is only slightly 
more work: nine sources and fifteen sinks. 

The following sections discuss some of the crucial 
aspects of the checker in more detail: inferring miss- 
ing actions (§ 3), analysis issues (§ 4), checking subtle 
rules (§ 5) and results (§ 6). 

3    Belief Inference 

A weakness of traditional checking approaches is that 
they rely on some form of specification or hardwired 
knowledge to encode checking properties. For exam- 
ple, to range check inputs, a strongly typed language 
might require that the programmer mark all data at 
all kernel entry points with a "tainted" type qualifier 
and all sinks with a "not-tainted" qualifier. In addi- 
tion to being potentially strenuous and invasive, one 

sm remge.check { 
// Wild-card variables used in patterns, 
decl any_expr y,  z,  len;   // match any expr 
decl any.pointer v; // match any pointer 
state decl any_expr x;       // bind state to x 

// Start state.  Matches any copy_from_user 
// call and puts parameter x in tainted state, 
start:   i copy_from_user(x,  y,  len)  } 

==> X.tainted 

// Catch operations illegal on unsafe values. 
X.tainted,  x.need_ub,  x.need_lb: 

{ v[x]   } ==>{ err("Dangerous  index!");   > 
I   { copy_from_user(y,   z,  x)  > 
I { copy_to_user(y,   z,  x)   } 

==> { err ("Dangerous length eirg!"); } 

II Named patterns that match upper-bound 
// (ub) and lower-bound checks (lb). 
pat ub = { X < y } I •( x <= y }; 
pat lb = { X > y } I { X >= y }; 

// Remaining SM code: match code actions that 
// affect tainted variables.  The notation 
//    true=x.<statel>, false=x.<state2> 
// specifies what state to put x in on the 
// true and false branches respectively. 
X.tainted: 

// lower bound check: on the true path the 
// variable needs an upper bound (need_ub); 
// on the false path it needs a lower 
// (need_lb). The other rules atre similar, 
lb ==> true=x.need_ub, false=x.need_lb 

I ub ==> true=x.need_lb, false=x.need_ub 
I { X == y } ==> true=x.stop, false=x.tainted 
I { X != y } ==> true=x.tainted, false=x.stop 

» 
X.need_ub: 

lb ==> true=x.need.ub, false=x.stop 
I ub ==> true=x.stop, false=x.need_ub 
I { X == y } ==> true=x.stop, false=x.need_ub 
I { X != y } ==> true=x.need_ub, false=x.stop 

> 
x.need_lb: 
lb ==> true=x.stop,  false=x.need_lb 

I  ub ==> true=x.need_lb,   false=x.stop 
I   f X == y } ==> true=x.stop,  false=x.need_lb 
I   { X   != y } ==> true=x.need_lb,  false=x.stop 

Figure 4: Stripped down version of the range checker: 
warns when unchecked data copied from the user is 
used as an array index or length argument. Some 
missing checker features: the rules for unsigned vari- 
ables, the full set of sinks and sources, inherited 
state (§ 4.2), and the boilerplate needed for inter- 
procedural analysis (§ 4.3) 



Source Function File 
copyin:1 

copyinstr:1 

Sink Function File 
copyin:2 

copyout:2 

copyinstr:2 

copyoutstr:2 

copystr:2 

bcopy:2 

bcopyb:2 

kcopy:2 

bcopyw:2 

memcpy:2 

copystr:2 

fillw:2 

malloc:0 

Figure 5: Complete checker specification for BSD. 
Two files list (1) the two BSD source functions and 
(2) the thirteen BSD sink functions. The file format 
is: fimction name ":" argument number. A trivial 
edit adds a new source or sink. 

real danger with such an approach is that it does not 
have a safety net to catch omissions. If a parame- 
ter is not annotated, it cannot be checked. If a sink 
is not annotated it will be missed. A key feature of 
our approach is using code behavior to infer check- 
ing properties, thereby allowing us to automatically 
cross-check them for correctness and completeness or 
even to eliminate them all together. This section dis- 
cusses how we use inference to detect: (1) missing 
sources, (2) missing sinks, and (3) whether network 
packets are incoming (untrusted) or outgoing (mostly 
trusted). 

3.1    Deriving untrustworthy sources 

Obviously, an unchecked, untrusted value can cause 
exciting trouble. A problem with OS code is that 
many untrusted values do not come from untrusted 
sources in a straightforward (analyzable) way. Ad- 
ditionally there are many sources of such untrusted 
values, making it easy to forget one. 

We would like to catch such untrusted input. We 
can do so by exploiting the fact that code often uses 
untrusted input in stylized ways. Thus, a value ma- 
nipulated in such ways implies a belief that the value 
is dangerous. We can then check this value as we 
would values produced by known Sources. (We could, 
but do not, also flag the producer of the value as a 
potentially missing source.) 

/* 2.4.9/drivers/telephony/ixj . c: ixj _ioctl 

case IXJCTL_INIT_TONE: 

copy_froin_user(&ti,   arg,   sizeof(ti)); 
retval = ixj_init_tone(j,  ftti); 
break; 

case IXJCTL_INTERCOM_START: 

if (ixjCarg] == NULL) 

return -ENODEV; 

♦/ 

j->intercoin = arg; 
ixj[arg]->intercom boeird; 

Figure 6: Two errors caught by tracking inferred user 
data; the errors allow an attacker to read or modify 
arbitrary kernel memory. The checker infers the vari- 
able arg contains user-supplied data because it spec- 
ifies the user address for copyJrom_user and thus 
flags its subsequent uses as an unchecked array index 
as errors. 

The most effective example of inferring user in- 
put has been exploiting a strange but common idiom 
in OS code: variables that can store either user in- 
tegers or user pointers depending on context. These 
variables tend to heavily cluster right where we need 
them: at interface boundaries where users give input 
to the OS. This situation is fortunate, since the op- 
erating system has very clear, unambiguous ways of 
treating user pointers. The most common such us- 
age is passing the variable as the user pointer to a 
routine that copies data between the kernel and user 
(e.g., copyin or copy out). The user almost always 
is the source of this address — the kernel does not 
spontaneously decide to read or write from arbitrary 
user addresses. Thus, we know that the variable hold- 
ing the address will generally contain data from an 
untrustworthy source and that all uses of the vari- 
able as an integer should be checked with the range 
checker. The key feature of this inference is that we 
can now check variables that receive untrustworthy 
data in ways we do not understand. As shown in 
Section 6, such inference allowed us to catch 12 ad- 
ditional bugs. 

Figure 6 gives an example of an error caught using 
inference. Here, the variable arg supplies the source 
user address to the call copyJrom_user. We thus 
know that arg generally holds untrustworthy data 
and should be treated as a tainted variable. This 
inference allows the checker to catch the two errors 
on the subsequent branch of the case statement where 
arg is used as an unchecked array index into ixj for 
both a read and a write, neither of which is good. 

The inference pass runs before the range checker. 



It traverses the compiled code, looking for uses that 
imply the kernel believes a variable holds user data. 
It marks the definition of such variable as tainted 
(i.e., where it was declared, assigned, or passed in). 
When the range checker subsequently runs, the sys- 
tem places marked variables in the tainted state, 
thereby causing the range checker to follow them. 

3.2 Deriving trusting sinks 

We also want to find missing sinks. We do so by 
again using the logic of belief analysis. Given a known 
source and sink, the normal checking sequence is: (1) 
OS reads data firom unsafe source, (2) checks it, and 
(3) passes it to a trusting sink. We modified the 
checker to flag cases where the OS does steps (1) and 
(2), but not (3). H code reads a value from a known 
source and sanitizes it, this implies it believes the 
value will reach a dangerous operation (assuming the 
programmer is not doing gratuitous sanitization). If 
the value does not reach a known sink, we have likely 
missed one. Similarly, we could (but do not) infer 
missed sources by doing the converse of this analysis: 
flagging when the OS sanitizes data we do not think 
is tainted and then passes it to a trusting sink. 

We ran the analysis on Linux 2.4.6 and inspected 
the results by hand to find what we were missing. 
There were roughly 10 common uses of sanitized in- 
put, all but one of which were harmless and did not 
cause security problems. For example, in a few places, 
the kernel was using the user value in a switch state- 
ment. However, one result we did not expect was 
that sinks can be missed both by omission and from 
analysis mistakes — running the check found a place 
where our inter-procedural analysis had been overly 
simphstic, causing us to miss a real error (given in 
Figure 14.) 

3.3 Network Data 

Generally, remotely exploitable errors are the most 
dangerous security holes. Our checker flags when 
data is read from packet headers and then used with- 
out checks. One of the key problems we faced was 
determining if.packets were incoming or outgoing. 
Networking code frequently reads values from out- 
going packets (in part because of modularity) as well 
as incoming packets. We only want to check data 
read from incoming packets — the data read from 
outgoing packets is (generally) safe since it is limited 
to reading packet headers produced by the host OS. 
Unfortunately, there is no general specification of di- 
rection. Instead we must infer one from the code. 
Otherwise, we could not practically check network- 

/* 2.4.9/drivers/isdn/act2000/capi.c: 

actcapi_dispatcli */ 
isdii_ctrl cmd; 

while   ((skb = skb.dequeue(&card->rcvq)))   { 

msg = skb->data; 

memcpy ( cmd. peLrm .setup. phone, 
msg->msg.connect_ind.addr.num, 
msg->msg.connect_ind.addr.len - 1); 

Figure 7: Remotely exploitable error: msg points at 
unchecked network data which can be used to copy 
arbitrary data onto the stack by overflowing cmd. 

ing code since our results would be washed out with 
false positives. 

The Linux kernel keeps track of network data in a 
structure called "sk_buf f," with variables of this type 
commonly named "skb." Each field of the structure 
contains various information about the origins of the 
data; the pointer to the actual data is in the "data" 
field. Figure 7 gives an example of a network error. 
In this code, after dequeueing a network packet skb 
from the receive queue "card-^rcvq," the code sets 
the pointer, msg, to the packet data. It then does an 
exploitable memory copy where both the length of the 
copy and the actual copied data come from the the 
message data. The variable that is overwritten, cmd, 
is on the stack, allowing a maUcious user to overwrite 
a return address and take over the machine. 

Distinguishing which sk.buf f s are being used for 
incoming and outgoing data is tricky. While in the 
above example this distinction is clear (pulling skb 
from a list named rcvq is a good indication it is in- 
coming data), in general the variety of ad hoc naming 
conventions would require close to full-blown natural 
language processing. Further, since we are checking 
for errors, we do not want to necessarily trust the 
naming conventions used by programmers. 

To solve this problem we use program behavior 
to infer whether packets are incoming or outgoing. 
We tried several approaches, but in the end a simple 
heuristic worked the best: if the checker sees the allo- 
cation for the structure, it knows that it is outgoing. 
Otherwise, it assumes that it is incoming. Using this 
heuristic, the number of false positives dropped from 
about 20 to 2. 

Our initial attempt to infer direction was both 
more complex and a failure. Logically, it seems rea- 
sonable that the usage of the skb structure would 
help to determine if it was incoming or outgoing. 
If its fields were read more often than written, the 



Expression Propagation 

q = P. 
memcpy(&q,ftp,sz) 

q is tainted. 

p+i, p-i, p*i The expression is tainted. 
P++, ++P, p—, ~p p remains tainted. 
p->field p's fields are tainted. 

Table 3: Summary of how a tainted value p transi- 
tively taints other values. 

checker could infer that the structure was incoming. 
If the fields were written more often than read, the 
data would be outgoing. For example, pushing data 
into an outgoing network packet would look some- 
thing like: 

skb->next = skb2; 
skb->sock = owner_socket; 
skb->data = my_data; 

whereas pulhng data from an incoming network 
packet would look something like: 

temp = skb->next; 
owner_socket = skb->sock; 

msg = (atcapi_msg *)skb->data; 

Thus, if there were more pulls than pushes performed 
on an skb, the data of that skb would be important 
to the checker. This was not necessarily the case. 
Drivers often used the fields of outgoing skbs for fur- 
ther calculations. 

4    Analysis Issues 

This section discusses some important practical 
checker issues: transitive tainting, inherited states, 
inter-procedural analysis, false positive suppression, 
false negatives, and ranking errors. 

4.1    Transitive tainting 
The range checker allows tainted variables to transi- 
tively taint other variables. Table 3 summarizes these 
rules. The simplest: a tainted variable p assigned to 
another variable q should cause q to be tainted as 
well. Equivalently, copying p onto q using a memory 
copy routine (e.g., memcpy) also taints q. Adding, 
subtracting or multiplying a number with a tainted 
value produces another tainted value. Similarly, in- 
crementing or decrementing a tainted value leaves it 
tainted. Note, however, that we do not consider the 
result of dividing a tainted value or computing its 
modulus to be tainted. Such operations are used by 

/* OpenBSD 2.9: kern/vfs.subr.c: 
vfs_heing_addrlist  */ 

error = copyin(zu:gp->ex_addr,   saddr. .); 

i = saddr->sa_family; 
if  ((rnh = nep->ne_rtable[i]) 

rn = rnh->rnh_addaddr(...); 

0) 

Figure 8: Inherited state catches this error which 
allows an attacker to take control of the system by 
causing the OS to jump to an arbitrary memory lo- 
cation. The attack exploits the hole where user data 
is (1) read into saddr, (2) assigned to i, and (3) i is 
used to index into the ne_rtable to obtain a function 
pointer that the kernel jumps to. 

the kernel to perform upper-bound checks: modulus 
by truncating the tainted value, division by scaHng it 
down. (Note that the division may not scale a tainted 
value far enough; we do not check for this error.) Fi- 
nally, if a structure is tainted, its fields are recursively 
tainted as well (discussed more below). The checker 
is structured to make adding additional transitivity 
rules easy. 

4.2    Inherited states 
While some security violations begin with raw inte- 
gers coming from user space, it is also an error (and 
a more common one) that the kernel copies an entire 
structure from the user and then uses a contained, 
unchecked value from that structure. Figure 8 gives 
an example of where missing checks on a structure 
field allows an attacker to cause the OS to jump to 
an arbitrary location in memory. 

Abstractly, if a structure is tainted, all of its con- 
tained data should be as well. To support such "in- 
herited" attributes, we modified the MC system to 
allow extensions to attach a function to objects that 
they track. This function controls how any member 
of that object inherits state from the base object. The 
function is called on demand when a member is ac- 
cessed for the first time; it returns the state in which 
to place the member (if any). The range checker's 
inherited state function is called whenever a field in a 
tainted structure is accessed and simply places signed 
integer members in the tainted state and unsigned 
integers in the needjub state: 

// Called when field "f" is first 
//    referenced in a tainted structure, 
int determine_inherited_state(mc_tree f){ 

if(mc_is_unsigned(f)) 
return need_ub; 



/* 2.4.12-ac3/drivers 

riocontrol */ 

if(copyinCarg, fthost. 

/char/rio/rioctrl.c: 

sizeof(host)) 

== COPYFAIL) 

return -1; 
if(copyout(p->R10Hosts[host].ParmMapP, arg, 

sizeof(PARM.MAP) ) == COPYFAIL) 

return -1; 

int copyin (int arg, 

int rv; 
rv = copy_from_usei 

if (rv < 0) return 

caddr.t dp, 

(dp, (void 

COPYFAIL; 

int siz) { 

*)arg, siz); 

else return rv; 

> 

Figure 9: Confidentiality breach caught by comput- 
ing global untrusted sources. The checker calculates 
that copyin transitively taints its second argument, 
host, and flags when host is used as an array index, 
thereby providing the user with arbitrary informa- 
tion. 

else 
return tainted; 

} 

Customized state inheritance makes the checker much 
cleaner. 

4.3    Inter-procedural analysis 

The range checker finds errors using both local and 
inter-procedural analysis (which can span function 
pointers). While local analysis finds many errors, 
it misses too many others. In Linux, local analysis 
found 109 errors, while inter-procedural found 16. 

From a client point of view, a key feature of inter- 
procedural analysis is that it allows the client to 
only supply the "base" unsafe sources and trusting 
sinks. The checker then uses inter-procedural anal- 
ysis to automatically compute all other procedures 
that could transitively produce or consume data by 
reaching these base routines. Figure 9 gives a Linux 
example error caught using inter-procedural source 
calculations. Here, the copyin function, used to emu- 
late BSD's copyin, is simply a wrapper for the call to 
copy Jromjuser . The checker calculates that copyin 
is a source, places host in the tainted state, and then 
flags when host is used to index into an array. 

Similarly, the checker finds all routines whose ar- 
gument could reach a trusting sink. If any variable 
becomes tainted, either because it is a system call pa- 
rameter, or because it is read from a local or global 

/* 2.4.9-ac9/fs/ioctl.c:sys_ioctl */ 

asmlinlcage long 
sys_ioctl(unsigned fd, unsigned cmd, 

unsigned arg) {. 

filp = fget(fd); 

if (Ifilp) 

goto out; 

error = filp->f_op->ioctl(..., cmd, arg); 

static int 

ip2_ipl_ioctl(..., unsigned cmd, 
unsigned arg ) { 

pCh = DevTable[cmd]; 

if(pCh) 
COPY_TO_USEK(rc, arg, pCh, 

sizeof (i2ChamStr) ) ; 

Figure 10: Inter-procedural function pointer er- 
ror that can crash the system or breach confi- 
dentiality. The value cmd comes from the user 
and is passed unchecked to the function pointer 
call filp->^f_op->ioctl. The checker emits an 
error since the pointer can potentially point to 
op2_opl_ioctl which uses cmd unsafely. 

sink, the checker will follow all calls this data is passed 
to, flagging if it is used incorrectly. The security hole 
in Figure 1 is one example caught by this analysis. 

Inter-procedural analysis works as a two-pass pro- 
cess. The first pass computes summaries of all calcu- 
lated sources and sinks as follows: 

1. It runs an MC extension that emits a callgraph 
for the entire OS. 

2. It then supplies the hst of root sources and sinks 
to an MC relaxation program, which uses the 
emitted global callgraph to compute the transi- 
tive set of functions (and their arguments) that 
could reach these routines. 

3. These calculated sources and sinks are emitted 
in two text files as three tuples giving: (1) the 
function name, (2) the argument, (3) the path 
to the source or sink (for error reporting). 

The second pass uses these summaries to flag errors. 
At each function call site it computes whether the 
call produces new tainted variables or consumes ex- 
isting ones (or both). In the first case it follows the 
variables. In the second it emits an error message. 

The checker also follows function pointers in ad- 
dition to simple calls.   During the first pass above. 



it records all function pointer assignments or initial- 
izations. During the second pass, it checks function 
pointer calls by seeing if any routine the pointer could 
reference is on a summary Hst and emits an error or 
taints the argument as needed. 

Figure 10 gives an error caught this way. Here 
a tainted value cmd is passed to a function pointer 
f ilp->f _op^ioctl. The checker compares the func- 
tions the pointer can reference against the list of 
functions whose arguments reach a trusting sink. It 
emits an error since the pointer can reference a rou- 
tine (op2_opl_ioctl) that uses the cmd argument un- 
safely. 

4.4    False positives 

We generally write checkers by first building a simple, 
weak version. If this finds enough bugs to be inter- 
esting we make it perform deeper analysis. Part of 
this process is modifying the checker to reduce false 
positives. Usually, false positives will come from a 
small number of sources, which can be suppressed 
with targeted checker modifications. In the case that 
there are only a few errors caused by a single feature 
we usually do not change the checker. Instead we use 
"history" to ensure that we only inspect an error or 
false positive once. For error reporting, we store er- 
rors in annotated logs. These logs represent errors as 
a tuple of features that are relatively invariant under 
edits (the file and function containing the error, the 
variables and function calls involved, etc.). We use 
these tuples to automatically classify errors and false 
positives that last to later releases. Below we discuss 
the major causes of false positives. 

The first is code that does simultaneous upper- 
and lower-bounds checks on signed integers by casting 
them to an unsigned value and doing an upper-bound 
check. For example: 

/* equivalent checks.  */ 
if(userlen < 0   I I  userlen > MAX) 

return -1; 
if((unsigned)userlen > MAX) 

return -1; 

The checker did not originally account for this idiom, 
but once it did, about 10 false positives were elimi- 
nated. 

The second source was because the inference of 
what data came from the user was often too general. 
The checker would see that a field of a structure came 
from the user and treat the whole structure as tainted 
instead of just that field. While this counted for six 
of the false positives, it was beneficial not to change 

the checker because when it was correct, the errors 
were quite severe. 

The third source came from the fact that if a sub- 
routine bounds checked a tainted variable, we would 
not propagate the bounds check up to the caller. 
(Though we do propagate the value down to all rou- 
tines the checking routine calls.) There were 5 false 
positives of this type. 

The final source of false positives were range-check 
errors on code paths that could only be executed by 
the super-user. We counted these as minor errors 
rather than false positives since they were, at the very 
least, bad style. 

4.5    False negatives 

While the checker finds a large number of different 
types of bugs; it misses others. We discuss the main 
(known) categories below. 

1. As stated in Section 2, the checker considers 
a value sanitized after being checked against 
any value rather than the right value. We are 
currently exploring the use of belief analysis to 
derive which bounds users believe a pointer or 
routine requires as a precondition. 

2. The system only tracks values within a given 
code path. It will miss errors where one sys- 
tem call stores a tainted value in a data struc- 
ture and a different system call subsequently 
extracts the value and uses it. 

3. The system loses the states of variables stored 
inside structures when they go across func- 
tion calls. For example, if a tainted value is 
stored in cmd—>len and cmd is passed to func- 
tion f00(cmd), the system will not remember 
that cmd->len is tainted while analyzing f oo. 

4. If a parameter is inferred tO come from the user 
the system does not propagate that information 
to the caller. For example, if while analyzing 
bar (int arg), the checker determines that arg 
must come from the user, callers of bar do not 
benefit from this information. 

The last three limitations are mainly due to the MC 
system itself. It is currently being reimplemented 
around a core set of more powerful analyses. Ex- 
tensions such as the range checker should (mostly) 
transparently benefit from these improvements. 

4.6    Ranking errors 

Given a large number of errors, ranking errors is as 
important as eliminating false positives. We use both 



/* 2.4.6/drivers/net/wan/sdla .c:sdla_xfer ♦/ 
if (copy_from_user(ftmem, 

return -EFAULT; 

info, sizeof(mem))) 

if (read) { 

temp = kinalloc(mem. len. GFP.KERNEL); 

if (!temp) 

return(-ENDMEM) f 

Figure 11: Oblique checking: the driver uses kmalloc 
as an implicit bounds check. 

generic and checker-specific ranking. The generic 
ranking stratifies errors based on how easy they are 
to diagnose as well as how likely they are to be false 
positives. Our ranking places local errors over global 
ones, errors that span few source lines and condition- 
als over those that span many, errors that do not 
involve aliasing over those that do. 

Our checker-specific ranking marks minor error 
patterns to distinguish them from potentially more 
serious ones. The main such demotion was errors in- 
volving allocation functions. Kernel allocation func- 
tions have a fixed upper-bound on the amount of 
memory they allocate at one time. There were many 
cases where the code was (possibly unintentionally) 
using the allocator to act as an implicit bounds check 
by relying on it to fail and return a NULL pointer when 
a large value was passed in. (Figure 11 gives an ex- 
ample.) While errors of this type are not exploitable 
security holes, relying on the allocator seems to be at 
least bad form since the size checked is an artifact of 
the allocator implementation. Further, rather than 
returning an error code saying that the user-specified 
value was too large, the caller of the allocator would 
most likely return an error code saying that the ker- 
nel was out of memory. This would not be the case 
and could cause problems further along. 

5    Enforcing Obscure Rules 

Many security rules are poorly understood and er- 
ratically obeyed. This section shows two of our best 
examples of how checkers can give significant prac- 
tical leverage by allowing one person to understand 
an obscure rule and write a checker that is imposed 
on all code. The first comes from an attack using 
user-kernel data movement routines, the second from 
overflow of fixed-size arithmetic. 

5.1    The length-field copy attack 

The user-kernel data movement routines in different 
operating systems share a common underlying as- 

/* 2.4.1/kernel/sysctl.c:do_sysctl_strategy */ 
int len; 

get_user(len, oldlenp); 

if (len) { 

if (len > table->maxlen) 

len = table->maxlen; 
if(copy. to_user(oldval, table->data. len)) 

return -EFAULT; 

Figure 12: A rare kernel security hole that allows 
an attacker to breach confidentiality. Upper-bound 
check on the integer len but no lower-bound allows an 
attacker to copy nearly arbitrary amounts of kernel 
data back into user space. 

sumption that allows attackers to breach confiden- 
tiality or integrity by reading or writing much more 
memory than was anticipated [4]. The attack was un- 
known to many seasoned kernel implementers — to 
the extent that they debated its vaHdity until shown 
a specific attack. The attack works on both BSD and 
Linux; we assume it works on other OSes as well. A 
typical type signature of these routines would be: 

/* BSD */ 
int copyout(void *kern, void *usr, 

unsigned len); 

/* Linux */ 
int copy_to_user(void *usr, void *kern, 

luisigned len); 

These routines explicitly work with untrusted point- 
ers and ensure that the specified user-virtual address 
range [user, user + len) is valid: both completely con- 
tained within the user's address space, and, more 
strongly, all the memory contained has some valid 
mapping. Naively, it would then seem that if the ker- 
nel does an upper-bound check on len to ensure that 
it is smaller than a maximum size that there could 
be no way that this routine could be circumvented. 

Unfortunately, as Figure 12 shows this is not suf- 
ficient. This case is interesting in that it was an error 
in the core kernel, rather than a driver and serves 
to illustrate how widely misunderstood security rules 
can be. The attack involves two user-suppHed vari- 
ables: the signed integer variable len and the pointer 
oldval. The code first reads in len using the macro 
get_user. It then does an upper-bound check on len 
(but no lower-bound check) and then passes it as the 
unsigned length argument to copy_to_user. Unfor- 
tunately, if len is negative, it will pass the bound 
check but become a large positive value when passed 
to copy_to_user. The most straightforward attack is 



/♦ 2.4.9/drivers/net/waii/farsync.c:fst_ioctl */ 
if(wrthdr.size + wrthdr.offset > FST_MEMSIZE) 

return -ENXIO; 
if(copy.from.user (card->mem + wrthdr.offset, 

ifr->ifr_data, wrthdr.size)) 

return -EFAULT; 

Figure 13: Overflow error that allows an attacker to 
potentially take control of the system. Large values 
of wrthdr.size and wrthdr. off set can cause the 
expression to "wrap around" to a small number, vac- 
uously passing the range check but allowing an at- 
tacker to overwrite any region of kernel memory with 
arbitrary values. 

to pass the kernel a well-chosen pointer address for 
oldval and a negative value for len such that the 
range [oldval, oldval + unsigned{len)) is a valid user 
address range. In this case, the attacker will be able 
to copy out near arbitrary amounts of kernel memory. 
(The straightforward fix is to make len unsigned.) 

5.2    Overflow fun 

While the need to bound values is conceptually 
simple, programmers often seem to forget the be- 
havior of fixed-size arithmetic. C has unsurpris- 
ing rules for integer overflow: positive signed val- 
ues that overflow become negative, and unsigned val- 
ues that overflow wrap around toward zero. Fig- 
ure 13 gives a typical error. Here, the programmer at- 
tempts to do an upper-bound check on wrthdr.size 
and wrthdr. off set using the expedient method of 
adding them together and checking that their sum 
is less than FSTJIEMSIZE. Unfortunately, because the 
expression can overflow and then "wrap around" to 
a small value, an attacker can cause this check to 
succeed even when the sum of the variables is very 
large. The hole lets the attacker overwrite any re- 
gion of kernel memory with a near-arbitrary amount 
of data they supply (via if r->if r_data). 

Figure 14 gives another, more subtle overflow 
error. Here the variable input is read from the 
user. The kernel then allocates a temporary buffer 
of size input. pathJLen + 1 bytes and then copies 
input.pathJ.en bytes of user data into it. As dis- 
cussed in Section 4.6 an allocation call with a large 
value usually acts as an implicit bounds check, since 
kmalloc will return a NULL pointer for large alloca- 
tion requests. Unfortunately, overflow allows an at- 
tacker to defeat the implicit check in the example. If 
input. pathJLen holds the maximum unsigned value, 
the addition of 1 will cause the value to wrap to 0. 

/* 2.4.9-ac7/fs/intermezzo/psdev.c: 

presto_psdev_ioctl */ 
err = copy_from_user(&input,£irg,sizeof (input)) ; 

input.path = kmalloc(input.path.len + 1, 

GFP.KERNEL); 

if(!input.path) 

return -ENOMEM; 

error = copy_from_user(input.path, user_path, 

input.path.len); 

Figure 14: Overflow-induced under allocation that 
allows an attacker to breach kernel integrity. If 
pathJLen equals the largest possible unsigned value 
the addition of 1 will wrap it to zero. A call to 
kmalloc (0) returns a non-nil pointer to a (small) 
amount of kernel memory, which the subsequent 
copy Jrom_user can be used to overflow, corrupting 
large amounts of kernel memory. 

However, a zero-byte allocation call to kmalloc will 
return a non-nil pointer to a (small) buffer, which 
the subsequent copyin will then exuberantly over- 
write with (say) 4GB of user data. 

The checker catches these errors using a very 
primitive approach: it treats all upper- and lower- 
bound checks that involve arithmetic on user data 
as vacuous. While this approach causes false alarms 
when a clever programmer does fancy bounds checks 
correctly, empirically such cases are negligibly rare. 

6    Range Checker Results 

Table 4 tabulates the range checker errors for both 
Linux (125 errors) and OpenBSD (12 errors). Errors 
are classified into five categories of decreasing sever- 
ity: 

1. Gain control of the system. A malicious user 
could use these holes to gain control of the sys- 
tem by jumping to arbitrary code or changing 
permissions to become the "superuser." At the 
very least, these holes allow an attack to crash 
the kernel. 

2. Breach integrity by corrupting kernel memory. 
These errors were most often a result of overflow 
math errors that caused the kernel to under- 
allocate memory, which then caused subsequent 
writes to corrupt adjacent memory locations. 

3. Read arbitrary memory. These include both 
confidentiality breaches where attackers could 
read information they were not supposed to 



Violation 
Linux 

Bug      Fixed 
OpenBSD 

Bug      Fixed 
Gain control of system 
Corrupt memory 
Read arbitrary memory 
Denial of service 
Minor 

18 
43 
19 
17 
28 

15 
17 
14 
5 
1 

3 
2 
7 
0 
0 

3 
2 
7 
0 
0 

Total 125 52 12 12 

Table 4: Error breakdown for Linux and OpenBSD. 

see as well as system crashes due to attackers 
causing the system to read invalid memory ad- 
dresses. 

4. Denial of Service. While not serious enough 
to take over the system, these errors could be 
exploited to make the kernel loop for a attacker- 
controlled amount of iterations. 

5. Minor. These were errors where the kernel code 
was using an allocation function as an implicit 
range check in user input. Errors also fell into 
this category if the error could only be exploited 
by the superuser — it is unlikely that the supe- 
ruser would want to perform a buffer overflow 
attack, but he could trigger it by accident and 
crash the machine. 

Our main caveat is that the result breakdown should 
be regarded only as approximate. The sheer number 
of errors and the fact that we are not core kernel im- 
plementers makes it possible that we mis-categorized 
some. 

Table 5 summarizes our experimental results. 
There were two results that surprised us. First, se- 
vere errors seem just as common as minor ones. On 
Linux in particular, the number of errors in the worst 
error categories roughly equal those in the last three. 
We had expected that the severe errors would be by 
far the most rare — these rules should be the most 
widely known, and the programmers the most at- 
tentive. Second, most bugs were local. Our initial 
checker was local-only; we had expected that making 
it inter-procedural would dramatically increase the 
number of bugs found. 

Inference of user input worked well on Linux 
(though it did not find OpenBSD errors). To get 
a feel for the number of checks performed (and hence 
the error rate) we counted the approximate number 
of variables checked in Linux 2.4.12 — there were 
roughly 3500 such variables (we count a structure 
with multiple fields as one variable). If we make 
the crude assumption that all errors found by our 

checkers in earlier versions of Linux would have oth- 
erwise persisted until 2.4.12 this gives an error rate 
of roughly 1 out of 28 variables being mishandled 
(125 errors / 3500 checks), which points to a strong 
need for automatic checking and programmer edu- 
cation. OpenBSD had a better but still high error 
rate: roughly 1 out of 50 variables mishandled (594 
checks / 12 errors). However, note that all of these 
errors were serious ones that could allow an attacker 
to crash or take control of the system. 

Result gathering and validation. The first 
runs of the range checker were over Linux 2.4.5. As 
we improved the checker and found more bugs we re- 
ported them to the Linux Kernel mailing list. The re- 
ports came roughly in batches every few weeks over a 
period of about four months, lasting to version 2.4.12- 
ac3, which was released two weeks before this pa- 
per was submitted. However, while errors come from 
multiple releases each bug is unique — we count each 
error exactly once rather than once for each release 
in which it appeared. Many of the reports resulted in 
kernel patches just a few hours after their submission. 
We used these patches to verify that the security holes 
were real, but the lack of a patch did not necessar- 
ily mean that the report was false. Some bugs were 
minor and fixing them introduced the possibiKty of 
adding new bugs. If a report was false, the kernel de- 
velopers would tell us and explain why. We focused 
mainly on Alan Cox's intermediary versions of Linux 
rather than Linus Torvalds' because Cox followed a 
more frequent release schedule. Most of our checking 
focus was on the versions 2.4.5 — 2.4.12, though we 
did check one outlying version (2.4.1). 

While the bulk of our results are on Linux, the 
range checker is easily adapted to other systems. We 
ran the checkers on OpenBSD 2.9 and found the range 
checker to be quite successful. Here, errors were val- 
idated by submitting them to Costa Sapuntzakis, a 
local BSD hacker, who in turn submitted security ad- 
visories for us. All of those bugs resulted in kernel 
patches. 



Category 
Total bugs 
Local bugs 
Global bugs 
Bugs from inferred user integers 
Network errors 
False positives   
Number of sources 
Number of sinks 
Number of inferred sinks 
Number of variables checked 

Linux (2.4.1, 2.4.5 — 2.4.12-ac3) 
125 
109 
16 
12 
1 
24 
9 
15 
4 
roughly 3500 (on 2.4.12) 

Table 5: Summary of experimental results. 

OpenBSD 2.9 
12 
12 
0 
0 
0 
4 
2 
13 
0 
594 

Thus, the errors went through a rigorous exam- 
ination process. While there are likely to be some 
false positives, we would be surprised if this number 
was more than 5%. 

7    Other checkers 

This section briefly discusses two other security 
checkers. 

7.1    A user-pointer checker 

The user-pointer checker warns when pointers copied 
from the user are dereferenced. If a pointer originates 
from an untrustworthy source, the kernel must use 
copyjf rom.user to access the data referenced by that 
pointer. The kernel cannot simply dereference the 
pointer. 

We have previously presented a user-pointer 
checker that followed system call parameters [8] and 
behaviorally inferred which pointers kernel code be- 
lieved were user pointers and which it believed were 
kernel pointers [9] (similar to the inference in § 3.1). 
A weakness in this past checker is that it did not 
follow data exphcitly copied from user space. We ex- 
tended it using the machinery developed for the range 
checker. 

The user-pointer checker uses the range checker's 
untrusted sources to mark all values copied from an 
untrusted source as tainted. It also uses state inherit- 
ing to recursively mark pointers contained in tainted 
structures as tainted. It then uses inter-procedural 
analysis to follow tainted pointers, flagging any deref- 
erence. While its analysis is as deep, the extension 
is much simpler than the range checker since in most 
operating systems there are no checks that can make 
tainted pointers safe. 

When we ran the user-pointer checker on Linux 

/* 2.4.9-ac10/drivers/pcmcia/ds.c  */ 
if (cmd ft lOC.IN) 

copy_froin_user(&buf,   arg,  size); 

ret = pcmcia_get_mem_page(buf.win.info.handle, 
ftbuf.win.inf0.map); 

/* drivers/pcmcia/cs. c: pcmcia_get_inem_page  */ 
int pcmcia_get_mem_page (window_hEindle_t  win, 

memreq.t  *req) 
if   ((win == NULL) 
II   (win->magic   != WINDOW.MAGIO) 

Figure 15: User pointer error: buf was copied from 
the user and then the field buf .win_info.handle (a 
pointer) is passed to the pcmcia_get_mein_page rou- 
tine which promptly dereferences it. 

2.4.9-aclO it found 6 errors with 7 false positives. 
These errors would be missed by our prior work. The 
false positives were mainly due to a single special-case 
check convention provided by the get_user() macro. 
We did not take the trouble to modify the checker to 
eliminate them. 

The most common error was copying a struc- 
ture from the user that contained a pointer and then 
dereferencing it. Figure 15 gives a representative 
error that allows an attacker to crash the machine. 
Here a structure (buf) is copied from user space. A 
pointer field it contains (buf .win_info.handle) is 
then passed as an argument to a routine that deref- 
erences it. 

7.2    Marking user-triggered errors 

Our prior work checked mainly for non-security er- 
rors. A typical run can find hundreds or even thou- 
sands of such errors in a system the size of Linux. 



/* 2.4.4-ac8/drivers/block/cciss.c: 

cciss_ioctl */ 
if(iocommand.buf_size > 128000) 

return -EINVAL; 

if(iocommand.buf.size > 0) { 

buff = kmallocCiocommeoid.buf.size, ...); 

if( buff == NULL) 

return -EFAULT; 

> 
if   (iocommand.Request.Type.Direction 

== XFER.WRITE)   { 
if  (copy.from_user(...)) 

return -EFAULT;   /* lost buff!   */ 

Figure 16: Lost memory security hole: a malicious 
user can cause the driver to leak up to 128K of mem- 
ory (pointed to by buff) on each call. 

/* 2.4.4-ac8/net/atm/common.c:atm_ioctl */ 

spin.lock (ftatm_dev_lock); 

case SIOCOUTQ: 

ret_val = put.user(...); 

goto done; 

case SIOCINQ: 

ret_val = put_user(...); 

goto done; 

Figure 17: Potential attacker-initiated deadlock: be- 
cause they occur with a spin lock held, each call to 
put_user can cause the system to deadlock. This 
single routine had 19 such errors. 

Thus, in practice, many errors are not fixed. Unfor- 
tunately, if any of these unfixed errors can be trig- 
gered by a user, they are a security risk. An attacker 
could use them as the basis of a difficult-to-track de- 
nial of service attack by deliberately triggering them 
to cause resources leaks or even machine crashes. 

The extension in this section flags errors that seem 
to be exploitable by the user. It runs before normal 
checking extensions and marks paths reachable from 
the user as exploitable paths. Later, when a stan- 
dard checker emits an error, a custom printing rou- 
tine checks for the "exploitable" annotation and if 
it there marks the emitted error as a security risk. 
These errors are ranked above all others. 

The extension heuristically marks two paths as ex- 
ploitable paths: (1) those that contain calls to copy 
data between kernel and user space and (2) those 
that contain any call to a function that checks per- 
missions. The underlying rationale for the heuristic 
is that such calls are generally reachable by the user 
since the system does not copy data or check permis- 
sions on a whim. Further the user can control which 
path is taken: the successful branch by satisfying nec- 
essary checks, the failed branch by passing in a bad 
pointer or by asking for an operation that they lack 
permissions for. 

The extension found three classes of errors: 

1. Ten places in Linux 2.4.4-ac8 where storage was 
not released in response to user errors. A ma- 
licious user could easily cause the kernel to run 
out of memory by repeated invocations. Fig- 
ure 16 gives one of the more egregious leaks. 

/* 2.4.4-ac8/drivers/block/cciss. c: 

cciss_ioctl */ 

if (copy_to_user(...)) { 

cmd_free(NULL, c); 

if (buff != NULL) kfree(buff); 

return( -EFAULT); 

if (iocommand.Direction == 
if (copy_to_user(...)) 

cmd_free(NULL, c); 

kfree(buff); 

> 
cmd_free(NULL, c); 

if (buff != NULL) kfree(buff); 

XFER_READ) 

■C 

Figure 18: Double-free security hole: the first 
copy_to_user correctly deallocates its storage and 
returns with an error. The second appears to have 
omitted a return statement, thus causing control to 
fall through and double free both c and buff. 

2. Sixty-two unique errors in various incremental 
versions of Linux 2.4.4 where a call to a block- 
ing, user-data copy routine lets an attacker po- 
tentially deadlock the system by giving the OS 
a pointer to memory that has been paged to 
disk, thereby causing it to sleep with a lock 
held. Figure 17 gives two such errors from a 
routine (atm_ioctl) that had 19 in total. 

3. Two double-free errors in 2.4.4-ac8. Figure 18 
gives both; note they are in the same routine 
(cciss_ioctl) from Figure 16. 

The extension also reinforces the point of Section 5: 
checkers are an effective way to enforce poorly- 
understood rules. In this case, one of the errors anno- 
tated by the extension had appeared in a prior paper 
without us realizing that it was a security risk! 



8    Related Work 

There are many methods for finding software errors. 
The most widely used, testing and manual inspection, 
suffer from the exponential number of code paths in 
real systems and the erratic nature of human judg- 
ment. Below, we compare our approach to other 
methods of finding security errors in software: high- 
level compilation, dynamic checking, and type sys- 
tems. 

There has been much recent work in automatic 
static detection of security holes. Bishop and Dil- 
ger [2] were among the earliest, and describe a system 
that uses global information to detect "time-of-check- 
to-time-of-use" (TOCTTOU) race conditions in priv- 
ileged Unix applications. More recently, there has 
been work on finding information leaks [12], intru- 
sion detection [17], and a lot of attention paid to 
detecting buffer overflows [6, 11, 13, 16, 18]. More 
generally many projects have embedded hard-wired 
application-level information in compilers to find er- 
rors [1, 2, 3, 7, 14, 18]. At a low level, our checkers 
find different error types than this prior work. At a 
higher level, these projects find a fixed set of errors, 
whereas we show that a general, extensible framework 
can be used instead, allowing the checking of a broad 
range of system-specific properties. 

In the context of dynamic analysis, the "tainting" 
feature in Perl [19] is a widely-used, effective way of 
finding unchecked uses of untrustworthy data. In a 
sense the approaches are complementary. Such dy- 
namic monitoring serves as a hard end-to-end check 
that no error is made. Static analysis allows these 
errors to be caught at compile time without runtime 
overhead, rather than potentially crashing the sys- 
tem. Pragmatically, the effort of adding such dy- 
namic information to a systems programming lan- 
guage seems much greater than writing checkers. 

Language type systems probably find more bugs 
on a daily basis than any other automatic approach. 
However, many program restrictions—especially tem- 
poral or context-dependent restrictions—are too rich 
for an underlying type system or are simply not ex- 
pressed in it. While there has been some work on 
richer frameworks such as TypeState [15], Vault [5], 
and aspect-oriented programming [10], these still 
miss many systems relations and require program- 
mer participation. Further, from a tool perspective, 
all language approaches require invasive, strenuous 
rewrites to get results. In contrast, our approach can 
precisely check properties without requiring the use 
of a specific language or ideology for code construc- 
tion. In our opinion, no one would use a tool that 
required the number of annotations needed by a type 

system; calling a tool a "type system" is not enough 
to make such overheads palatable. 

One feature to note about stronger type check- 
ing is that it is a mistake to think that the errors 
found in this paper would have been "solved" if C 
provided dynamic bounds checks. Such checks would 
cause a runtime exception when violated. Exceptions 
are mishandled notoriously often. A common exam- 
ple is exception handling code that does not reverse 
all necessary effects (e.g., releasing locks, unpinning 
memory, decrementing reference counts), which at 
the very least allows denial-of-service attacks. 

Finally, we have noticed that an extension-based 
approach for checking has several advantages over 
annotation-based approaches (such as type systems). 
One advantage is that extensions significantly reduce 
the cost of specification by combining analysis with 
ad hoc knowledge. A good example of this is the 
function in Section 2 used to indicate if a routine is 
a system call. Rather than having to annotate ev- 
ery system call parameter in the source code (pos- 
sibly missing some), one can simply write a fixed- 
cost extension that automatically marks all routines 
beginning with "sys_" as having tainted arguments. 
A second advantage is that extensions can use cus- 
tomized analysis to both infer checking information 
from code and to catch when they miss check-related 
actions. Passive annotations can do neither. 

9    Conclusion 

This paper has shown how to use programmer- 
written compiler extensions to catch security errors. 
We have presented one checker and sketched two oth- 
ers. The extensions worked well in practice. We 
found well over 100 errors in two systems (Linux and 
BSD), some in core kernel code. Kernel implementers 
have patched over 50 of the errors in response to our 
reports. 

Our most developed checker, the range checker, 
used novel techniques both to eliminate the need to 
specify some checking properties and to detect in- 
complete (or incorrect) specifications. We used such 
inference in three places. First, to detect missed 
sources, the range checker looked for other uses of 
input that suggest that it comes from the user. Sec- 
ond, to find missed sinks, the checker looks for places 
where data comes from a known, unsafe source, is 
checked, but is then not used for anything for which 
the checker knows to look. Third, to determine what 
data comes from an incoming (rather than outgoing) 
network packet the checker uses code analysis rather 
than specifications.  We hope to extend the checker 



to allow easy addition of arbitrary data types (such 
as strings) that require preconditions be met before 
use. 

We believe the use of system-specific static anal- 
ysis is a general approach to finding security errors. 
A practical advantage is that it allows automatic en- 
forcement of obscure, poorly understood rules. 
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